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Contrary to the inability to use the effective-mass approximation (EMA) for infinite crystals,
two criteria are obtained for the validity of the EMA for finite crystals. The first restricts
the potential drop across the crystal to be less than the band gap, and the second restricts the
“empty-lattice” energy level to be smaller than the free-electron kinetic energy.

I. INTRODUCTION

The dynamics of Bloch electrons in the presence
of external fields can, under certain conditions,
be made very simple by the use of the effective-
mass approximation (EMA). The criteria for the
validity of this approximation for the impurity case
and for a crystal in a constant magnetic field were
obtained by Luttinger and Kohn'! aud, for the former
case, also by Zak?® using his kq representation and
deriving the next term in this approximation. The
case of crossed electric and magnetic fields was
treated by Zak and Zawadski.® Usually these cri-
teria are given by the “gentleness” of the perturb-
ing potential' and by the smoothness of the wave
functions. ~* None of these works is concerned
with the case of a finite crystal.

In the case of an applied constant electric field
the EMA has been used® to calculate the electro-
optic absorption.®” The functions used for the
calculation were of the Kohn-Luttinger' type, with
solutions for the infinite range “empty crystal” in
the presence of the field multiplying the Bloch
functions. This approach resulted in energies in
the presence of the field ranging from -« to+ «
even for the smallest electric field and so it is hard
to explain the use of the EMA there. In fact, one
can easily show that an infinite crystal in a constant
electric field constitutes a problem which cannot
be simplified by the effective-mass approximation.
To see this we note that one of the conditions for
the validity of the EMA is the smoothness of the
effective eigenfunctions, 3* namely, the demand

4

that the functions can be developed with a small
number of Fourier components, [See also condi-
tion (b) in this paper and its discussion following
Eq. (2.32).] Now, the Fourier transform of the
Airy function Ai(x), which is the effective solution
for the infinite crystal, is given® by

o

Al(x)= éf e{kxelks/fi dk,

-0

the components being of order 1 in absolute value
for the whole 2 axis. Thus the smoothness is not
fulfilled in the infinite case and the EMA is nct
valid.

In this paper we try to investigate conditions
under which the problem of an electron in a finite
crystal in an external field can be approximated
by.the EMA. As the finite problem has some unique
properties hitherto untreated, we rederive the ap-
proximation for this case. We follow the Luttinger-
Kohn method of investigating the validity of the
EMA, and we stress the different features and al-
so some assumptions implied in Ref. 1 but not
elaborated upon. We restrict ourselves to the one-
dimensional case. The three-dimensional one is
a readily obtained extension of the present treat-
ment. We shall see that several steps of the proof
are easier in the finite-crystal case.

In the specific case treated in this paper, namely,
the constant electric field, the potential is “gentle”
enough, being a first-degree polynomial in x [see
also Eq. (2.21)ff] and we get two conditions
[strictly speaking sufficient conditions butnotneces-
sary ones (like the criteria obtained previously'™)]
for the validity of the EMA here. The first (C1)
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follows from the demand that the Fourier com-
ponents of the potential be smaller than a typical
interband separation, and the second (C 2) follows
from the wanted smoothness for the effective wave
function.

II. EMA

We consider electrons inside a finite one-dimen-
sional crystal governed by the time-independent
Schrodinger equation

[p%/2M + V(x) + U(x)|¥(x) = € ¥(x) ,
0<x<Na=L (2.1)
where V(x)= V(x+a) is the crystal periodic potential
with a period a.
U(x) is the additional potential which in our case

is eEx. For boundary conditions we shall use the
appropriate® periodic ones

¥(0)= (L), %(oh %(L). 2.2)

The solutions of (2.1) and (2. 2) with U=0 are
the (assumed known) Bloch functions

2
i@2%/L)mx u"m(x),

@n,m(x¥)=€
m=0,1,..., N-1 (2.3)

and eigenvalues €,(m).
plete orthonormal set,

The ¢,,, constitute a com-

<¢n'm’ ’ q)nm>=6ml' 6mm' . (2- 4)

If we carry out the integration by dividing the crys
tal into unit cells and summing the integrals over
these, we get

a
(Gume| Pum)=NOpus [ e mthm dx

where we made use of the identity

N-1
L ei(al/L)(m-m )M=N6mm' .
=0

(2.5)

o

In what follows we shall use the relation (for
m=m')

foa un'm(x)unm(x) dx=N - Gm' o (2. 6)

Now we prove that the following set: y,,, = e‘>™*/ L
XU, o(x)is a complete set if { ¢} is. This can be
proved relatively more easily for the finite case than
for the infinite one.’ First we show that {t,0(0)}
is a complete set for periodic functions. Every
function f(x) can be developed in the ¢ - s:

N-1
fx)=2 Z_o Znm PamlX) (2.7

where
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Zm= [y () @ ) dx

= foLf(x)e‘Z"""/L wk, (x) dx . (2. 8)

Now, if f(x+a)=f(x) we can develop f(x)u*,(x) in a
Fourier series:

f(x) u:m (x) =ZlBr;mei2ﬂx/a , (2. 9)
where
1 a 2
B = - / Fx)ux (x)e B/ L gy (2.10)
0
In this case,
Enm= ZXB’I'M foL eiZ"x(lN-m)/L dx = LBS'O 6m,O
(2.11)
so that, from (2.7) and (2. 10),
f(x) = ann,oun,o (x)
=N [UA) dx Ty udy () o) 2.12)

(f is periodic) and thus { u,(x)} is a complete set
for periodic functions.

Now, if ¥(x) is a general function (not periodic),
we have that {x,. is a complete set, because from
(2.7), using (2.12) for the periodic functions u,,(x)
and the definition of x,,(x),

()= 2 Gpm Xpm(X),

n,m

(2.13)

where
Gnm =Z:tgml b"lm

and the g, , are the coefficients in the development
of ¥ in Bloch functions (2.7), and the b!™ are the
development coefficients of the periodic u;,,(x) in
terms of the {u,,o(x)},

ul,m(x) = anrllm unO(x)'
The orthonormality of the x’s is also easily proved:

L .
 Xnm | Xn'm' )= fo pt2rm '"')’/Lutgu,,,gdx . (2.14)

The term in the integrand multiplying the exponent
is periodic and so can be developed in Fourier
series:

wko( Xy o(x) = 2~ BT gi2rix/a (2.15)
where
nn’ 1 ‘ -i2r1x/
BY = uko (W)u e o(x) 27/ 9 gy, (2.16)
0
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Inserting (2.15) in (2. 14), we have
(Xnm ‘ Xn'm* > =L ZIB’IMl Gth-m' 200

where we used the identity
foL eiprx/de: Lép,o .

But m’ — m ranges only between — (N —1) and (N -1).
So I in the above 6 function can be only 0 and we
have, using (2. 6),

<Xnm l Xn'm* > = LBgnl 5mm’ = 6rm’ 6mm‘ . (2° 17)
In this way we have built a Luttinger -Kohn-type
finite orthonormal complete set of functions for the
interval [ 0, L ]. Next we derive the appropriate
Schrodinger equation in this representation. To
this end we multiply (2. 1) by y ¥,(x) and integrate

from 0 to L. From the first term we get
ne v ax* ¢ (* 9°
- — X —anm *
2M [x’"" ax v ax ]o +J’o ¥ axZ Xrm dx.

With the “appropriate” boundary conditions [i.e.,
those for which the Wronskian vanishes, e.g., (2.2)],
the Hamiltonian is Hermitian. Using (2.13),

(2.17), and the definition of u, o, we get from
(2.1) (assuming the order of summation and inte-
gration can be interchanged)

i 2mm n% (2mm
M L Z? Do Gn‘m +[€n(0)+m < L ) "€:| Gnm
L
+ f U0 ¥(x) xt (1) dx=0, (2.18)
0
where!

a -
pnn’ =N fO u:ol’“n'odx .

In deriving (2. 18) we used the identity [for periodic
functions f(x)]

L rx(m’' -m a
Jo €M Ef(x) dx= Ny [ fx)dx, (2.19)

which is equivalent to the treatment in (2.14)-
(2.17). In the last term of (2.18) U(x) is bounded
[in our case U(x)=eEx <eEL ], and thus the last
term can be written in the form

L : .
I= 2. Gpme fo U ()1 o(X)uy(x) @¥27*m =™/ L gy |
n'm'

Expanding u} ou, ,, in Fourier series (2.15) we get

I=L ), BT}, Gy U (IN+m’ =m) , (2.20)
n'1 m’

where U (p)= L™ [} U(x)e®"** L dx is the Fourier

transform of U(x) in the interval. In our case

U(x)=eEx, so
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IEL Sl’ 1=0, m=m’

U(IN+m' —m)= 5

2[1’77(1N +m’ —=m)]|? otherwise.
(2.21)

Now, we would like'™ to neglect in (2. 20) all the
terms with [#0. If we could do so, we could use
(2.6) for By™ and get, for I,

I= 2 G Ulm’ =m) . (2.22)
pr
This is called by Zak and Zawadski® a “diagonal
potential, ” —diagonal, of course, in the sense that
contributions to I come only from intraband terms.
In order to go from (2. 20) to (2.22), a sufficient
(although not by all means necessary) condition is
the following:

(a) Solve (2.18) only for small m’s. We will
have to show later that we need mostly terms of
this kind.

(b) Assume G, for small m’s (small compared
with N) to be much bigger with respect to those
G’s for larger m"’s, so that we need to sum in
(2. 20) only on small m’s. [It is worthwhile to men-
tion that it is not enough to demand that U be small
for large arguments as, for example, the term
with m’ -=m=-(n-1), 1=1, though “nondiagonal, ”
is big. |

(c) Under conditions (a), (b), i.e., for small
m, m’, demand

2B U(IN+m’ —m) < B TUlm' -m) .
120

(2. 23)

BT, being Fourier coefficients of continuous dif-
ferentiable functions (2. 16), decrease asymptotical-
ly at least!® as 1/1. Thus if U(p) goes asymptotically
not slower than 1/p, we need concern ourselves
only with a finite summation in (2.23). We assume
(and this should in principle be checked for each
case) that the B™ do not rise too rapidly for small

1 (#0). Then, in order that (2.23) exist, we need

U(IN+m' —=m)<U(m' - m),

1#0, |m-m'|<N. (2.23)
In our case
M: 3 , (for small p)
U(p) IN

by (2. 21), so that, unless B’,"" rises in this manner
(which we assume is not the case), condition (c) is
fulfilled. We will discuss conditions (a) and (b)
below.

With these assertions, (2.18) gets the form
(compare Refs. 1-3)

0) a) ~
22 HP+HY4Q) 1 i Guome =€ G

n'm'

(2.24)
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where
n® [2mm\
Hr(lgn).n‘m' = [€;O)+ m < L >:|6nn' Smm s
2
Hr(l}n),n‘m' = % zm pnn' 5mm‘ ’ (2- 25)

an.n'm’ =U(m’ _m)bnn‘ .

The nondiagonal terms in H’ are of the order of
2n/L. Since in the EMA one retains terms up to
the order (27/L)? (the approximation being no longer
valid for higher-order terms), we would like to
transform them away. These elements can be
eliminated to a first order in 27/L by the trans-
formation' [which stays with the same m, so that
(a), (b) are not affected]

’

(2t
G= esD; Snm.n' m = Ynn'
2 0, n=n'
(2. 26)

where w,, = €,(0) - €,(0). We note that this trans-
formation does not depend on the particular auxil-
iary potential, but only on the unperturbed Bloch

problem. The correction terms to @ coming from
this transformation [see Eq. (2.33) of Ref. 1] are

(nm I [@s] ]n’m')=-f—/1- ZL—ﬂ (m-m')

X f_’zm'_ ﬁ(m - m’)’
nn’

n#¥n’ (2.27)

where again we have used (2. 23). The order of
these interband terms is again [like H"’in (2.25)]
2m/L. 1t seems therefore that in order to get rid
of the interband terms of H*? we have created new
interband elements of the same order. However,'
these matrix elements can be neglected with re-
spect to those which are retained in the EMA pro-
vided the additional coefficient multiplying them
[namely, T(m - m’')/w,, ] is small. Recalling that
this comes in squared (being a part of interband
elements), we impose the following condition for
the EMA to be valid:

T(p)/w<1,

where T(p) is a typical Fourier component of U(x)
(for small p), while w is the energy gap. In our
case, by (2.21), TU(p) is of the order of eV/27, where
V is the potential difference on the crystal. Thus
we have a strict criterion for the applicability of
the EMA for this finite problem, namely, that the
potential difference (in energy units) be smaller
than the energy gap,

V<e,. (c1)
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This is a most important result, stressing the im-
portance of the voltage differences on the sample
(or perhaps on a mean free path in scattering
cases). Again, this criterion shows why the EMA
is not valid for infinite crystals. With these pro-
visions we get as an equation for {D},(2. 26):

€n(m)Dpp+ 25 U(m’ = m)D s =€ D, , (2.28)
oy

where €,(m) is understood to be the development of

€,(m) to second order in 2r/L. Now, for each n we

have N D’s (m=0, 1, ..., N-1). We define a func-

tion F, which is given originally only on the discrete

points la, 1=0, 1, ..., N-1:
N=-1

F,()= Zo D, et?rtom/ L (2.29)

The energy €,(m) can be taken to be periodic in m

with a period N, €(m+N)=¢(m), and then can be

developed in Fourier series with only N terms:

N-1
€"(m)= Z EnIQ-lznm/N .
1=0

(2.30)

Multiply (2. 28) by e2""™/¥ and sum over m. The
first term becomes

Z E m' D elZl’m(l-m' )/N
mm' n nm
= [Z,Em' 7( —m')] F (D, (2.31)

which has the effect of operating on F,(I) by an op-
erator €, which is built from €,(m) by replacing
27m/N by 8/8x, leading to the translation operators
T. The second term of (2. 28) becomes

22 O(m' =m)D,, ¥/ ¥
m'm

S U(p)e-(zr ”/LDnm' e{2ﬂm' /N .
N+1 m’

If we assume again the sum over m’ to contain
only small m’, and L (x) to be given by a small
number of Fourier terms, we have for the latter
approximately U(la)F (1), and thus (2.1) goes into

(€, +Ulla)IF, () =€ F,(1) , (2.32)

which is the EMA operation.

Equation (2. 32) is a difference? equation and nota
differential one. No conscientious effort has been
made to date to justify using the derived differential
equation'' instead of (2.32). Now, considering
condition (b) above, we see that in order for it to be
valid the D,,’s for small »’s must be much bigger
than those with large m’s [the transformation (2.26)
has only a negligible effect]. This means?® that
F,, the solution of (2.32), has to have mostly
“small m” Fourier components [see Eq. (2.29)].
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Thus there is a restriction on the ability to use the
EMA (as was commented upon in Ref. 3). In our
case, the F,(x) are solutions of Airy-type equa-
tions.'? These functions (Airy functions'®) have the
following features: For € <eEx, the function is
concave, with no zeros, while for € >eEx, the func-
tion is convex and there are oscillations, the num-
ber of nodes increasing with energy from Oto N -1
in the interval [O—L]. The expressions we want to
estimate are

1 N-1
Dun= %, 2, F,(l)ezrim/¥ (2.33)

1=0

The node-free part of F does not pose great diffi-
culties. A relatively small number of Fourier
components is sufficient to represent it. To esti-
mate the number of coefficients needed for the
oscillating part, we calculate the smallest “period”
of the function and demand that the wavelength of
the highest Fourier term (m,,) be smaller than
that. In order to fulfill condition (b) this m,,, has
to be small compared to N. But N in real crystals
is a large number (of the order of 10”). Now the
larger the number of nodes of F, the larger is the
number of the Fourier components needed for its
development. It is therefore necessary to consider
only those functions (belonging to higher energy
levels) having a large (with respect to 1) number

of nodes (but still small, of course, compared to
N). The number of nodes in the interval [0, L |
depends on the energy level in the band n. If we
denote the levels by the number p beginning at the
lower edge of the band, the first level (¢,,;) has no
nodes, ¢, . has one node, etc. Thus, the number
of nodes for F, ,is p —1. As will be seen below,
the distance between nodes decreases with the func-
tion’s argument | Z |. Hence only the farthest
(away from Z=0) negative arguments will be con-
sidered. For the functions we consider, namely,
those having a large number of zeros, we can use
their asymptotic expansions which are'®!?

C
F,,,p( -Z)~ 2T sin(¢ Za/z+i7r) s

(2.34)
where
’
Z=ry”3x——"g‘f-; %
2m*e 2m*eE
€np= —pz b, a= 7

and m* is the effective mass.

The “period” of oscillation of F is seen from
(2. 34) to decrease with | Z |, the smallest being
that one near the (p — 1)th node. It can be calcu-
lated from (2. 34) by, say, finding the interval be-
tween two successive zeros of F. These zeros
occur for Z=(3m)?/? , where v is an integer, v=0,
1, 2,..., (p-1). The smallest interval between
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successive nodes for x is (for p>1) Axy,= 7e/3
x(2/3ap)!’?, which is one-half of the wavelength.
The wavelength of the mth Fourier term in the sum
(2.33) is A\,=Na/m. In order that the Fourier sum
be a good representation for F, we need )\,,,mx< Ax,,
or

Moy ™ Na(3ap)1/3/21/3 72/3 . (2. 35)

Now, in order to use the EMA, this m,,, should
be smaller than N, i.e.,

P<3E,/v, (C2)

where
2 2
E,= zﬂ . (l)
m a

is the kinetic energy of a free particle in the edge
of the Brillouin zone and v =eEa is the potential
energy drop on one unit cell. This establishes a
second condition for the validity of the EMA. It
means that we can use the EMA for a part of the
band only. Let us write (C 2) in another form. Re-
calling'? that the energy levels of the “empty lat-

tice” in the presence of the constant electric field
are given by

n? (31 \3
“ ome\2

for p>1, the above condition can be put in the form

(2. 36)

€p <Ek' (CZ')

The smallest distance from a band edge of the last
energy level for which the EMA can be used has to
be smaller than the kinetic energy of a free elec-
tron in the edge of the Brillouin zone. To get a
feeling for this criterion we calculate it for a spe-
cific example. For a of the order 5 A we get
E,~1eV. vis given by 5x10™*E (eV) when E is
measured in 10* V/cm. Thus the criterion for
this case is

p<10%/E (E in units of 10* V/cm) ,

which even for high electric fields has a relatively
high upper bound for p.

III. DISCUSSION

Two conditions were obtained for the validity of
the EMA for crystals in finite-range electric fields,
namely, (C1) and (C2). Condition (C1) restricts
greatly the possibility of using the EMA particular-
ly for an explanation of the electro-optic absorption
experiments hitherto performed.'* These experi-
ments were usually carried out with voltages much
higher for the specimens used than that allowed by
(C1). However, for thin enough samples one can
have very strong fields and still fulfill (C1). A
calculation which has been carried out for the
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electro-optic absorption using the EMA will appear
in a future publication.'® Some changes from the
present results (obtained using the Franz-Keldish
theory) have been calculated.'® It might be possible
that one could use a less-strict condition by con-
sidering L as the mean free path in a crystal in-
stead of its length. This matter is now under in-
vestigation. The second condition (C 2) restricts
the range of energy for which the EMA can be ap-
plied. It has a simple form and can easily be
checked. A similar criterion appears for the im-
purity problem?® and for the case of a crystal in a
constant magnetic field.* In the case of a constant
magnetic field, however, this restriction is usually
ignored in calculating the optical magnetoabsorp-
tion.'® The condition (C 2) gives also a better qual-
itative understanding why the EMA cannot be used
for the case of an infinite crystal in a constant elec-

tric field: It is clear that as the number of nodes
of the eigenfunctions increases, the smallest “peri-
od” decreases (see the expression for Ax, above)
and the number of Fourier terms needed to repre-
sent the function increases. For an infinite crys-
tal, this “period” goes to zero and thus the function
cannot be developed in a finite number of terms
anymore.

Let us stress again that while for the infinite
crystal there is no justification to use the EMA,
this approximation was shown to be applicable to
real (finite) crystals under conditions (C 1) and (C 2).
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The hydrodynamic theory of the electron gas, first applied to surface plasmons in metals
by Ritchie, is critically examined using the equation of motion for the Wigner distribution
function in the random-phase approximation (RPA). It is found that the theory does not agree
with the RPA in the case of surface plasmons, though it does for bulk plasmons.

I. INTRODUCTION

In deriving the dispersion relation of surface
plasmons in metals, several authors!~® have used
the hydrodynamical equations for a charged fluid.
While one may view with some suspicion the appli-

cation of these equations to the so-called “collision-
less” region, it is nevertheless true that the wave-
vector dependence of the bulk-plasmon frequency,
calculated by the hydrodynamic theory, is in ap-
parent agreement with the prediction of the random-
phase approximation (RPA),* to the lowest order



